2014 International CES in Las Vegas January 7th-10th

January 2014 brings the Consumer Electronics Show “CES” to Las Vegas in one of the world’s top technology showcases.   From Ford to IBM to small startups, companies come to the Internationl CES event to show off their latest and best consumer technology products.

Unfortunately we won’t be reporting live from CES as we have for many years here at Technology Report, but we’ll bring you interesting items as they pop up at the show. 

Check out some of the latest press for what many consider the world’s top technology event:

2014 International CES

Social Media has become a big part of the CES Experience as bloggers and podcasters work alongside major media outlets to cover the Technology action from thousands of exhibitors throughout the huge Las Vegas Convention Center.
 

Europe’s Human Brain Project – can a billion Euros buy a brain?

In January Henry Markram got a late Christmas present.  After intense international competition, Markram’s quest for a brain simulation received one of the largest grants in the history of science – 500 million euros from Europe’s new Technology “Flagship” program.

The European Human Brain project is a large expansion of Markram’s “Blue Brain” efforts which have made amazing progress over the past several years.  With this level of funding the HBP appears to have left the USA’s DARPA SyNAPSE as something of a funding pauper.    However as politicians begin to recognize the significance of thinking computers DARPA is likely to get much higher funding.

From the HBP Executive Summary: 

We propose that the HBP should be organised in three phases, lasting a total of ten years.
For the first two and a half years (the “ramp-up” phase),
the project should focus on setting up the initial versions of
the ICT platforms and on seeding them with strategically selected data. At the end of this phase, the platforms should be
ready for use by researchers inside and outside the project.
For the following four and a half years (the “operational
phase”), the project should intensify work to generate strategic data and to add new capabilities to the platforms, while
simultaneously demonstrating the value of the platforms for
basic neuroscience research and for applications in medicine
and future computing technology.
In the last three years (the “sustainability phase”), the
project should continue these activities while simultaneously
moving towards financial self-sustainability – ensuring that
the capabilities and knowledge it has created become a permanent asset for European science and industry

SyNAPSE Chip: “Someday, you’ll work for ME!”

SyNAPSE Project Chip

SyNAPSE Project AI Neuromorphic Chip

IBM’s Aug 18th Press Release announced another significant milestone for the DARPA SyNAPSE project, the world’s best funded and arguably the “most likely to succeed” approach to creating a general artificial intelligence.

The release notes that the new chips represent a departure from traditional models of computing:

…. cognitive computers are expected to learn through experiences, find correlations, create hypotheses, and remember – and learn from – the outcomes, mimicking the brains structural and synaptic plasticity.

To do this, IBM is combining principles from nanoscience, neuroscience and supercomputing as part of a multi-year cognitive computing initiative. The company and its university collaborators also announced they have been awarded approximately $21 million in new funding from the Defense Advanced Research Projects Agency (DARPA) for Phase 2 of the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) project.

As we’ve noted here many times, another remarkable project is the Blue Brain Project in Europe spearheaded by Dr. Henry Markram.     That team has joined with many others and is in the process of applying to the European Union for substantial funding – perhaps as much as 1.6 billion dollars.    Although Blue Brain tends to shy away from stating that their objective is a general artificial intelligence,  I would argue that they should have that goal and also that they are much more likely to be funded by stating that goal in no uncertain terms.

Unfortunately there remain many both in and outside of technology circles who believe the search for a general artificial intelligence is either dangerous or a waste of time and money.   Both these scenarios are possible but unlikely.   Sure, intelligence can be dangerous but given human history compared to technology history it seems odd to argue that we are more likely to create a Frankenstein than a helpful machine process.    Computers don’t kill people, people kill people.

In terms of a waste of time and money, clearly we humans have overrated our intelligence for some time – probably since the beginning of self-awareness.   There are few rational reasons to reject the idea that we cannot duplicate processes that are similar to our own thinking in a machine.   The advantages of machine based intelligence are likely to be  substantial – probably on the order of a new human age with vastly improved resource efficiency, poverty reduction, and more.  Thus the costs – currently measured in the low tens of millions – pale in comparison to almost all other government projects – many with massively dubious and negative ROIs.

Neuroscience Expert Dr. Henry Markram on the IBM “Cat Brain” Simulation: “IBM’s claim is a HOAX”

Editors Note:   We’re hoping for more information from Dr. Modha who is also welcome to a Guest post here at Technology Report.

——   Guest Post by Dr. Henry Markram of the Blue Brain Project —-

IBM’s claim is a HOAX.

This is a mega public relations stunt – a clear case of scientific deception of the public. These simulations do not even come close to the complexity of an ant, let alone that of a cat. IBM allows Mohda to mislead the public into believing that they have simulated a brain with the complexity of a cat – sheer nonsense.

Here are the scientific reasons why this is a hoax and misleading PR stunt:

How complex is their model?
They claim to have simulated over a billion neurons interacting. Their so called “neurons” are the tiniest of points you can imagine, a microscopic dot. Over 98% of the volume of a neuron is branches (like a tree). They just cut off all the branches and roots and took a point in the middle of the trunk to represent a entire neuron. In real life, each segment of the branches of a neuron contains dozens of ion channels that powerfully controls the information processing in a neuron. They have none of that. Neurons contain 10’s of thousands of proteins that form a network with 10’s of millions of interactions. These interactions are incredibly complex and will require solving millions of differential equations. They have none of that. Neurons contain around 20’000 genes that produce products called mRNA, which builds the proteins. The way neurons build proteins and transport them to all the corners of the neuron where they are needed is an even more complex process which also controls what a neuron is, its memories and how it will process information. They have none of that. They use an alpha function (up fast down slow) to simulate a synaptic event. This is a completely inaccurate representation of a synapse. There are at least 6 types of synapses that are highly non-linear in their transmission (i.e. that transform inputs and not only transmit inputs). In fact you would need a 10’s of thousands of differential equations to simulate one synapse. Synapses are also extremely complex molecular machines that would themselves require thousands of differential equations to simulate just one. They simulated none of this. There are complex differential equations that must be solved to simulate the ionic flow in the branches, to simulate the ion channels biophysics, the protein-protein interactions, as well as the complete biochemical and genetic machinery as well as the synaptic transmission between neurons. 100’s of thousands of more differential equations. They have none of this. Then there are glia – 10 times more than neurons..And the blood supply…and more and more. These “points” they simulated and the synapses that they use for communication are literally millions of times simpler than a real cat brain. So they have not even simulated a cat’s brain at more than one millionth of it’s complexity.

Is it nonetheless the biggest point neuron simulation ever run?
No. These people simulated 1 billion points interacting. They used a formulation to model the summing up and threshold spiking of the “points” called the Izhikevik Formulation (an extremely simple equation). Eugene Izhikevik himself already in 2005 ran a simulation with 100 billion such points interacting just for the fun of it: (over 60 times larger than Modha’s simulation). This simulation ran on a cluster of desktop PCs and which every graduate student can run This is no technical achievement and certainly not even a record number of point neurons. That model exhibited oscillations, but that always happens so even simulating 100 Billion such points interacting is light years away from a brain.
see: http://www.izhikevich.org/human_brain_simulation/Blue_Brain.htm#Simulation%20of%20Large-Scale%20Brain%20Models

Is the simulator they built a big step?
Not even close. There are numerous proprietary and peer-reviewed neurosimulators (e.g., NCS, pNEURON, SPLIT, NEST) out there that can handle very large parallel models that are essentially only bound by the available memory. The bigger the machine you have available, the more neurons you can simulate. All these simulators apply optimizations for the particular platform in order to make optimal use of the available hardware. Without any comparison to existing simulators, their publication is a non-peer reviewed claim.

Did they learn anything about the brain?
They got very excited because they saw oscillations. Oscillations are an obligatory artifact that one always gets when many points interact. These findings that they claim on the neuroscience side may excite engineers, but not neuroscientists.

Why did they get the Gordon Bell Prize?
They submitted a non-peer reviewed paper to the Gordon Bell Committee and were awarded the prize almost instantly after they made their press release. They seem to have been very successful in influencing the committee with their claim, which technically is not peer-reviewed by the respective community and is neuroscientifically outrageous.

But is there any innovation here?
The only innovation here is that IBM has built a large supercomputer – which is irrelevant to the press release.

Why did IBM let Mohda make such a deceptive claim to the public?
I don’t know. Perhaps this is a publicity stunt to promote their supercompter. The supercomputer industry is suffering from the financial crisis and they probably are desperate to boost their sales. It is so disappointing to see this truly great company allow the deception of the public on such a grand scale.

But have you not said you can simulate the Human brain in 10 years?
I am a biologist and neuroscientist that has studied the brain for 30 years.  I know how complex it is. I believe that with the right resources and the right strategy it is possible. We have so far only simulated a small part of the brain at the cellular level of a rodent and I have always been clear about that.

Would other neuroscientists agree with you?
There is no neuroscientist on earth that would agree that they came even close to simulating the cat’s brain – or any brain.

But did Mohda not collaborate with neuroscientists?
I would be very surprised if any neuroscientists that he may have had in his DARPA consortium realized he was going to make such an outrages claim. I can’t imagine that that the San Fransisco neuroscientists knew he was going to make such a stupid claim. Modha himself is a software engineer with no knowledge of the brain.

But did you not collaborate with IBM?
I was collaborating with IBM on the Blue Brain Project at the very beginning because they had the best available technology to faithfully allow us to integrate the diversity and complexity found in brain tissue into a model. This for me is a major endeavor to advance our insights into the brain and drug development. Two years ago, when the same Dharmendra Mhoda claimed the “mouse-scale simulations”, I cut all neuroscience collaboration with IBM because this is an unethical claim and it deceives the public.

What IBM allowed Modha to do here is not only wrong, but outrageous. They deceived millions of people.

Henry Markram
Blue Brain Project

IBM / DARPA SyNAPSE announce new brain simulation at Supercomputing Conference

Update:  The reports of  this breakthrough at a ‘cat brain’ level may be quite misleading or exaggerated.  I’m in contact with Henry Markram, a leading brain researcher spearheading the “Blue Brain” simulation in France, and waiting for his permission to post his concerns about the claims from IBM researchers.

At the Supercomputing Conference SC09 in Portland Oregon IBM has announced a spectacular advance in our ability to mechanically simulate cognitive activity with machines – they have developed a brain simulation that approximates a cat brain in complexity.

We have profiled the SyNAPSE project here at Technology Report thanks to a guest post by one of those working there. This new development is a remarkable advance given that SyNAPSE has been going strong for under one year. With a cat brain complexity under its belt it appears only a matter of a few more years before the project is likely to have modeled interactions at the scale of human brain complexity.

The most provocative idea about brain modelling is that these models will at some point attain human-like consciousness along with the ability to communicate with humans and (hopefully) cooperate with us in problem solving. No longer just a science fiction topic, this potential “explosion of intelligence” relates to one of the hottest topics in technology – the Singularity.

More on the IBM Blue Matter project from:

Forbes
Popular Mechanics